Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency.

نویسندگان

  • Axel Thielscher
  • Thomas Kammer
چکیده

OBJECTIVE To compare two commonly used TMS coils, namely the Medtronic MC-B70 double coil and the Magstim 70 mm double coil, with respect to their electric field distributions induced on the cortex. METHODS Electric field properties are calculated on a hemisphere representing the cortex using a spherical head model. The coil designs are characterised using several parameters, such as focality, efficiency and stimulation depth. RESULTS Medtronic and Magstim coils exhibit similar focality values and stimulation depths, despite very different coil designs. However, the Medtronic coil is about 1.2 times more efficient compared to the Magstim coil. This difference corresponds to different motor and visual phosphene thresholds obtained in previous physiological studies, thereby validating the chosen coil modelling approach. Focality of the Medtronic coil changed less with varying coil-cortex distance compared to the Magstim coil, whereas both coils exhibited similar dependencies on changes in cortex radius. CONCLUSIONS The similar values for focality and stimulation depth indicate that both coil types should evoke similar physiological effects when adjusting for the different efficiencies. The different physiological thresholds of the two coils can be traced back to differences in coil design. Ideally, focality should depend neither on coil-cortex distance nor on cortex radius in order to allow for an inter-subject comparability. In particular, in motor mapping experiments the size of the resulting maps is affected by these two parameters. Consequently, they are at least partially the cause of the variability across subjects seen in these experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays

Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulat...

متن کامل

Construction and Evaluation of Rodent-Specific rTMS Coils

Rodent models of transcranial magnetic stimulation (TMS) play a crucial role in aiding the understanding of the cellular and molecular mechanisms underlying TMS induced plasticity. Rodent-specific TMS have previously been used to deliver focal stimulation at the cost of stimulus intensity (12 mT). Here we describe two novel TMS coils designed to deliver repetitive TMS (rTMS) at greater stimulat...

متن کامل

The Focusing Optimization of Transcranial Magnetic Stimulation System

The transcranial magnetic stimulation (TMS) technology development becomes a painless, noninvasive, green treatment and detection method in recent years. However, because of the difference in efficiency of the stimulation system, the technology is not widely used. The focality of the magnetic field is one of the key issues that affect the efficiency of magnetic stimulation. If the focusing prob...

متن کامل

Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation

Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone co...

متن کامل

How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations

BACKGROUND Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to severa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology

دوره 115 7  شماره 

صفحات  -

تاریخ انتشار 2004